	P.O. Box Woodinville	INEERING & DESIGN 2372 e, WA 98072 206) 817-8834	
	FILE NO.	210426	
TITLE		Nakamura Residence Garage Addition	
		Lateral Load Analysis	
		4245 90th Ave SE	
		Mercer Island, WA	
	PREPARED BY	Tom Wolfe, PE	
		24163 24163 CISTORIO 4/30/2021	PAGE <u>1</u> OF <u>23</u> DATE <u>4/30/2021</u> REV. <u>0</u>

Table of Contents

Section	Page
Cover	1
Table of Contents	2
Introduction	3
Seismic Loads	6
Wind Parameters	11
Lateral Loads Upper Floor	12
Lateral Sketches	15
RHO Calculation	21
Appendix 1	22

	Total Number of Pages: 23	
	Nakamura Residence	Revision
	Garage Addition	0
(QUALITY ENGINEERING & DESIGN)	Lateral Load Analysis	REPORT No.
		210426
		PAGE 2/23

Introduction The following calculations provide lateral analysis for the referenced garage addition to existing single family structure for size and configuration of shear walls, hold-downs and connections. Additionally, reviewer comments from a previous review will be addressed. See following page for a description of the analysis methodology and assumptions incorporated on the following pages. **NEW GARAGE EXISTING STRUCTURE** SUMMARY OF DESIGN PARAMETERS SEISMIC WIND Analysis Procedure: Equivalent Lateral Force Procedure Basic Wind Speed: 110 mph Short Period Response, Ss: 1.408 Wind Exposure: В Short Period Response S_{DS}: 0.93867 Topographic Factor, Kzt: 1.60 Base Shear Coeff, Cs: 0.14441 Seismic Design Category: D

The following Codes and references are used to develop loads and allowables:

- [1] "International Building Code (IBC)", 2018 Edition, International Code Council
- [2] ASCE 7-16, "Minimum Design Loads for Buildings and Other Structures", American Society of Civil Engineers

[3] National Design Specification (NDS), "Design Allowables for Wood Construction", American Forest & Paper Association, American Wood Council

[4] Simpson Strong-Tie, Catalog C-C-2017, "Wood Construction Connectors"

[5]	
IJ	

The following computer programs were utilized in the completion of this report:

PROFIS Anchor, Version 2.6.2, produced by Hilti Corporation FORTE, Version 5.1, produced by Weyerhaeuser Corporation

	Nakamura Residence	Revis	sion
	Garage Addition	0	
QUALITY ENGINEERING & DESIGN	Lateral Load Analysis	REPOR	RT No.
		2104	126
		PAGE	3 / 23

Introduction

Referring to the sketch on the following page, the lateral load will be distributed along 2 shear lines in the North/South direction (S/L a, S/L b), and 3 shear lines in the East/West direction (S/L 1, S/L 2, S/L 3).

LATERAL ANALYSIS PROCEDURE NORTH / SOUTH DIRECTION:

For wind and seismic loading in the North/South direction, the garage addition will be treated as a stand-alone structure in that all lateral loads will be reisted by shear walls in the new garage and no new loads will be imparted on the existing structure in this direction

Along Shear Line b, the lateral resistance will be provided by a combination of (1) 7' shear wall and (2) PFH Single Portal Frames. A detail is provided for the PFH frames and associated anchorage.

EAST / WEST DIRECTION

For wind and seismic loading in the East/West direction, lateral loads will be distributed to 3 shear lines (S/L 1, S/L 2, S/L 3) based on tributary area. There is no change to loads on Shear Line 3 so, while the loads are calculated here, it is not included in the scope of this analysis.

Shear Line 2 is common to both the existing structure and the proposed garage addition. On this shear line, loads are calculated for the existing 2-story structure as well as the portion of the new gargae that are tributary to S/L 2. It is then verified that there is adequate shear wall capability to resist the loads due to existing plus new structure.

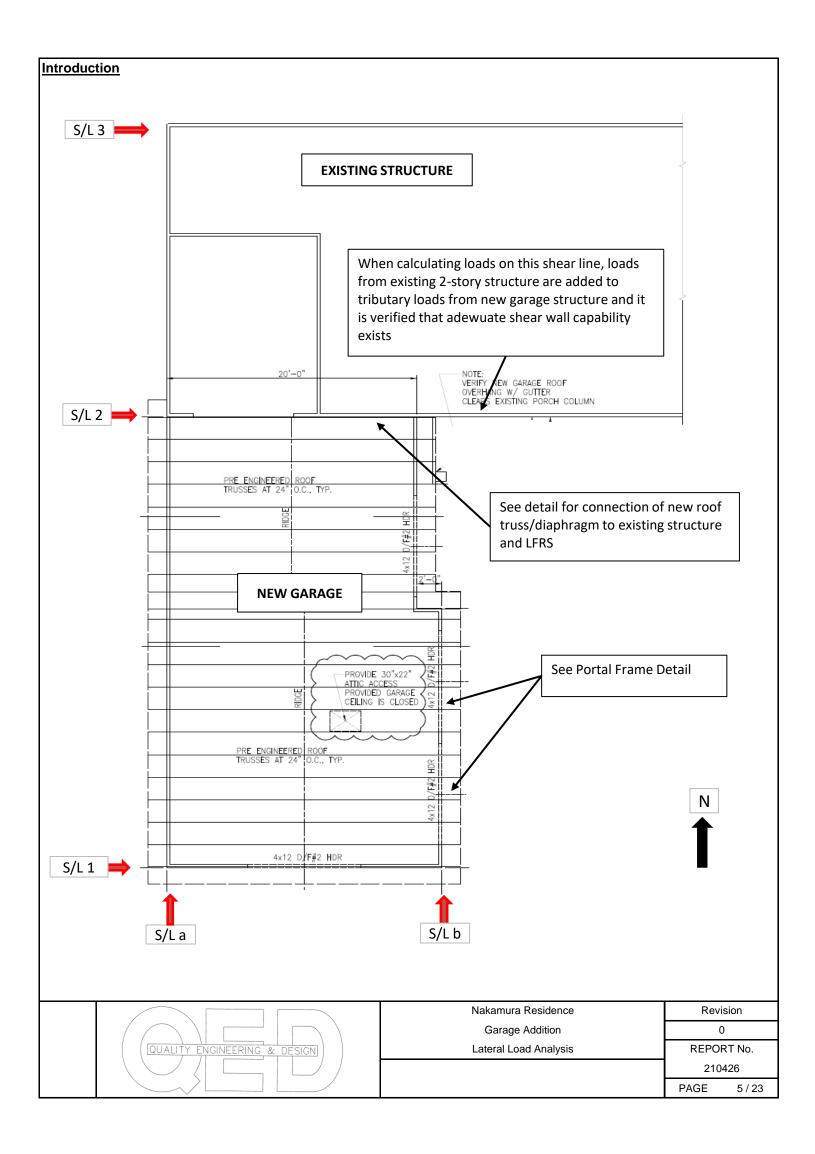
Shear Line 1 is common to only the new structure and will have no affect on the existing structure.

As was noted in the initial review comments, there is a horizontal structural irregularity of Type 2, Reentrant Corner Irregularity. This requires that forces in connections of diaphragms to vertical elements and collectors to the SFRS be increased by 25%. To account for this, the seismic loads on the structure have been globally multipled by an irregularity amplification factor of 1.25 as shown at the bottom of page 12. Per Table 12.6-1 of ASCE 7, the Equivalent Lateral Force Procedure for analysis is still acceptable with a Type 2 irregularity.

Additional items from the previous review related to the structural design are addressed below:

- Provide a detail where the new roof meets existing structure. Provide load path to LFRS
 - Detail has been provided based on load magnitudes in the following analysis

- Verify that tributary load from calculated lateral forces can be resolved to existing structure.


- the analysis approach for this was described above and is further demonstrated in the analysis on the following pages

- Provide detail showing how portions of thestructure are interconnected in accordance with ASCE 12.1.3, SDPWS Section 4.1.4, ASCE 7-10 Section 12.10.1

See following analysis and sketches provided

- Wind load has been evaluated for a basic wind speed of 110 mph
- Lateral design for new garage is provided:
 - includes a detail for the portal frames at garage doors
 - wind load includes a speed up factor, Kzt, of 1.6 per reviewer comment

		Nakamura Residence	Revis	sion
		Garage Addition	0	
(QUALITY ENGINEERING & DESIGN)	Lateral Load Analysis	REPOR	RT No.	
		2104	426	
			PAGE	4 / 23

smic L	_oads							
					D	lef.: Defau	It Values	
	Site Clas	sification, Ref. ASCE 7, Chapter 2	า			ite Class:	D	1
Г	Site	Description						_
ŀ	A	Hard rock		D St	iff soil			7
	В	Rock			oft clay so	bil		
	C	Very dense soil and soft rock			-	ring site respo	nse analvsis	
L	Note:	Typically, Site Class "D" can be assu	ned if no					
I	Latitude	and Longitude of Site						
		4245 90th Ave SE						
		Mercer Island, WA						
	Latitude:	47.56973 °						
Lo	ongitude:	<mark>-122.21925</mark> °						
:	Site-Spe	cific Seismic Parameters:			(0	or use data fro	m Geotech I	Report)
	Ref.:	http://earthquake.usgs.gov/hazard	<u>ls/desigr</u>	<u>nmaps/</u>				
	Code:	2010 ASCE 7 (w/March 2013 erra	ta)					
ΔΤΟ	Hazard	s by Location						
	-	-						
		Search by Coordinate						
			Search					
Coordinat	tes: 47.56973	48, -122.2192489						
🖣 Wind	d 🕺	≰ Snow 🥰 Tornado – <mark>√</mark> – Se	ismic					
	nce Documen		~					
Risk Ca	ategory	Ш	~					
Site Cla	ISS	D - Stiff Soil	~					
	Print the:	e results B Save these results		▼ Addi	tional Infor	mation		
Basic P	Parameters			Name	Value	Description		
Name	Value	Description		SDC	D	Seismic design ca		
S _S	1.408	MCE _R ground motion (period=0.2s)		Fa	1	Site amplification		
5 S1	0.541	MCE _R ground motion (period=1.0s)		Fv	1.5	Site amplification		
S _{MS}	1.408	Site-modified spectral acceleration value		CRS	0.956	Coefficient of risk		
S _{M1}	0.811	Site-modified spectral acceleration value		CR ₁	0.932	Coefficient of risk		
S _{DS}	0.939	Numeric seismic design value at 0.2s SA		PGA	0.582	MCE _G peak grou		
S _{D1}	0.541	Numeric seismic design value at 1.0s SA		F _{PGA}	1	Site amplification		
5.		-		PGAM	0.582	Site modified pea	k ground accelera	ation
				ΤL	6	Long-period trans	ition period (s)	
	0	Desarra Assolution Desarra						
	•	Response Acceleration Parame	lers.					
	short per							
	1 sec pe Transitio	riod: $S_1 = 0.541$ g n period: $T_L = 6$ sec	< L/	ona Peri	od transi	tion period, Re	f. ASCE 7. F	- ia. 22-12
,								-
						ura Residence		Revision
						age Addition		0
		QUALITY ENGINEERING & DESIGN)			Lateral	Load Analysis		REPORT No.
								210426
								PAGE 6/2

Seismic Loads **Seismic Parameters:** Select Risk Category: Ref. ASCE 7 Table 1.5-1 Non substantial risk to human life П 1.00 l_e = Seismic Importance Factor for Risk Category II Ref. ASCE 7 Table 1.5-2 I_{e,Risk} = Site Class D Ref. previous page $S_s =$ Spectral Response Accel Param, short period $S_S =$ 1.408 Ref. previous page g $S_1 =$ $S_1 =$ Spectral Response Accel Param, 1 sec period 0.541 g Ref. previous page $F_a =$ Site Coefficient (based on S_s and Site Class) 1 Ref. ASCE 7 Table 11.4-1 $F_a =$ $F_v =$ (based on S₁ and Site Class) $F_v =$ Site Coefficient 1.5 Ref. ASCE 7 Table 11.4-2 S_{MS} = MCE_R Spectral Response, short period $S_{MS} = F_a S_S =$ 1.408 Ref. ASCE 7 Eqn. 11.4-1 MCE_R Spectral Response, 1 sec period $S_{M1} = F_v S_1 =$ 0.8115 $S_{M1} =$ Ref. ASCE 7 Eqn. 11.4-2 $S_{DS} = 2/3^*S_{MS} =$ $S_{DS} =$ Design Spectral Response, short period 0.939 Ref. ASCE 7 Eqn. 11.4-3 $S_{D1} = 2/3^*S_{M1} =$ 0.541 $S_{D1} =$ Design Spectral Response, 1 sec period Ref. ASCE 7 Eqn. 11.4-4 Seismic Design Category based on S_{DS}: D Ref. ASCE 7 Table 11.6-1,2 D D (use worst case) (A = low, F = High)based on S_{D1}: Seismic Coefficients: Ref. ASCE 7, Table 12.2-1 **Building Structure** Structure Type Can be different in X & Z directions. Light Framed Wood Shear Walls Light Framed Wood Shear Walls Description: X: $R_x =$ 6.50 $R_7 =$ 6.50 R = **Response Modification Factor: Z**: $\Omega_{0,z} =$ 3.00 $\Omega_0 =$ **Overstrength Factor:** $\Omega_{0,x} =$ 3.00 $C_d =$ 4.00 $C_{d,z} =$ 4.00 **Deflection Amplification Factor:** $C_{d.x} =$ N = Number of Stories = N = 1 Nakamura Residence Revision 0 Garage Addition QUALI ENGINEERING & DESIGN Lateral Load Analysis REPORT No. 210426 PAGE 7/23

Seismic Loads

Calculate Fundamental Period of Strucure: h _n = Highest point on structure 15.5 Ft. Cu = 1.4 Ref ASCE 7 Table 12.8-1 Ct = for "all other structural systems" 0.02 Ref ASCE 7 Table 12.8-2 x = for "all other structural systems" 0.75 Ref ASCE 7 Table 12.8-2	
$Cu =$ 1.4Ref ASCE 7 Table 12.8-1 $C_t =$ for "all other structural systems"0.02Ref ASCE 7 Table 12.8-2	
C_t = for "all other structural systems" 0.02 Ref ASCE 7 Table 12.8-2	
$X = 10^{\circ}$ all other structural systems 0.75 Rel ASCE 7 Table 12.8-2	
$T_a = Approx Period = (C_t) (h_n^x) = 0.16$ Ref ASCE 7 Eq 12.8-7	
$T_{max} = Maximum Period = (Cu) (Ta) = 0.22 Ref ASCE 7 Sec 12.8.2$	
$T = Period = greater of T_{max} and T_a$ 0.22	
$T_o = (0.2) (S_{D1} / S_{DS}) = 0.12$ Ref ASCE 7 Sec 11.4.5	
$T_{\rm S} = (S_{\rm D1} / S_{\rm DS}) = 0.58$	
T_L = Long Transition Period 6 Ref. ASCE 7, Fig. 22-12	
Design Spectral Response Acceleration:	
$S_a = Design Spectral Response Acceleratic 0.94 Ref ASCE 7 Sec 11.4.5$	
Seismic Design Procedure:	
Seismic Design Category = D	
Risk Category = II Based on these conditions, from Table 12.6-1:	
Structure Type is Light Framed Wood Shear Walls Equivalent Lateral Force Procedure is	
Number of Stories = 1 Acceptable	
Determine C _s :	
$C_s = \frac{SDS}{R / I_{seismic}} = 0.144$	
· · · · Seisinic	
C _{sMax} = 0.381 Ref ASCE 7 Eq 12.8-3 and 12.8-4	
C _{sMin} = 0.041 Ref ASCE 7 Eq 12.8-5 and 12.8-6	
Governing Value for Cs = 0.144	
Seismic Base Shear = V = C _s x W	
For Allowable Stress Procedure (ASD), Fs = 0.7 x Cs = 0.101	
Seismic Base Shear = $0.7C_s \times W$	
Nakamura Residence Revis	ion
Garage Addition 0	
QUALITY ENGINEERING & DESIGN Lateral Load Analysis REPOR	T No.
2104	26
PAGE	8 / 23

Seismic Loads

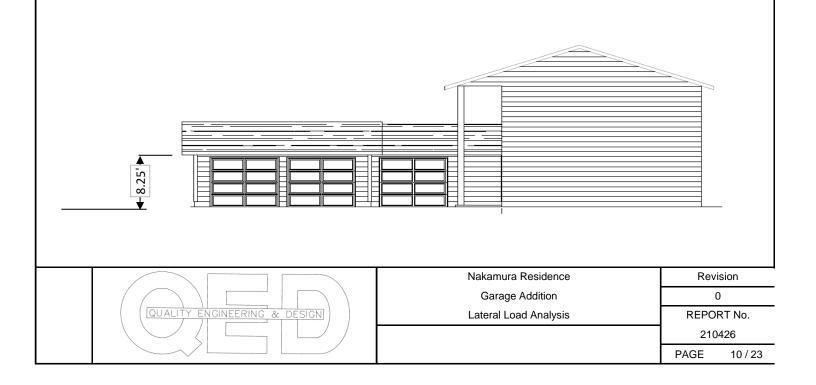
Shear wall loads

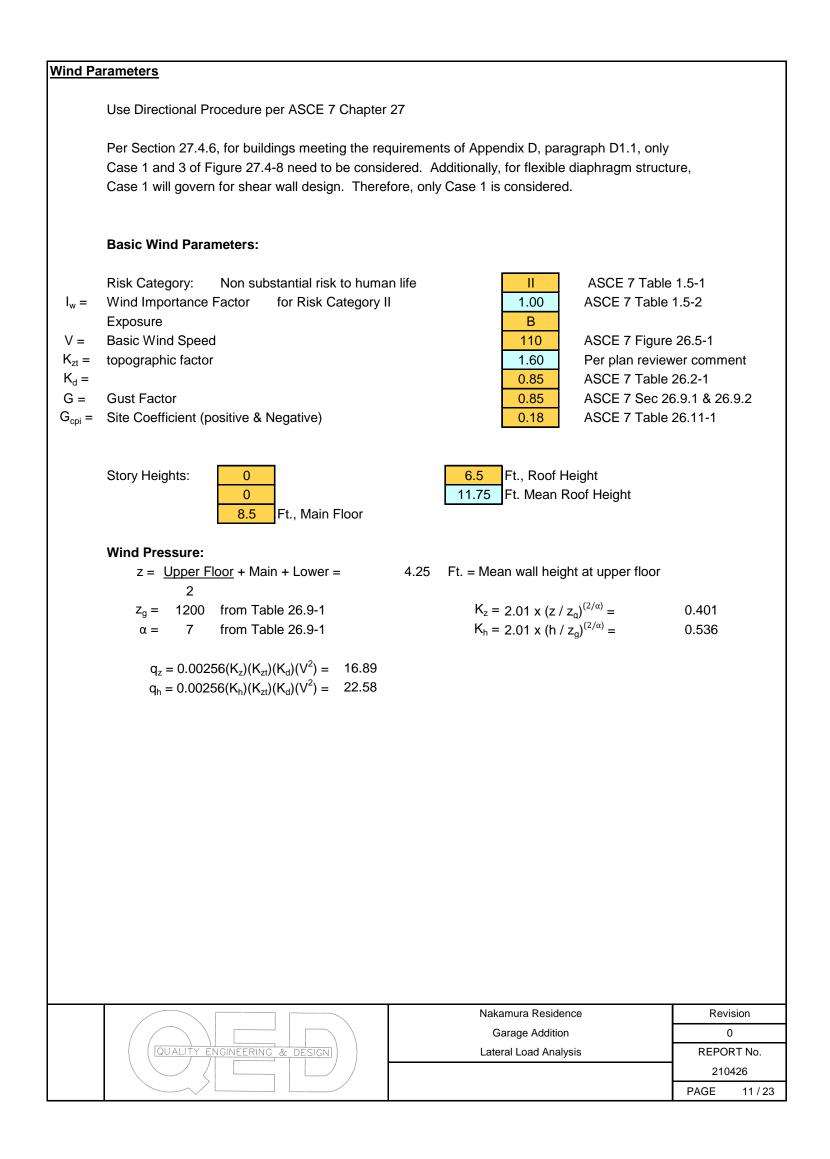
S/W Designation	Allowable Load
	Lb. / Ft.
P1-6	242
P1-4	353
P1-3	456
P1-2	595
P2-6	484
P2-4	707
P2-3	911
P2-2	1190

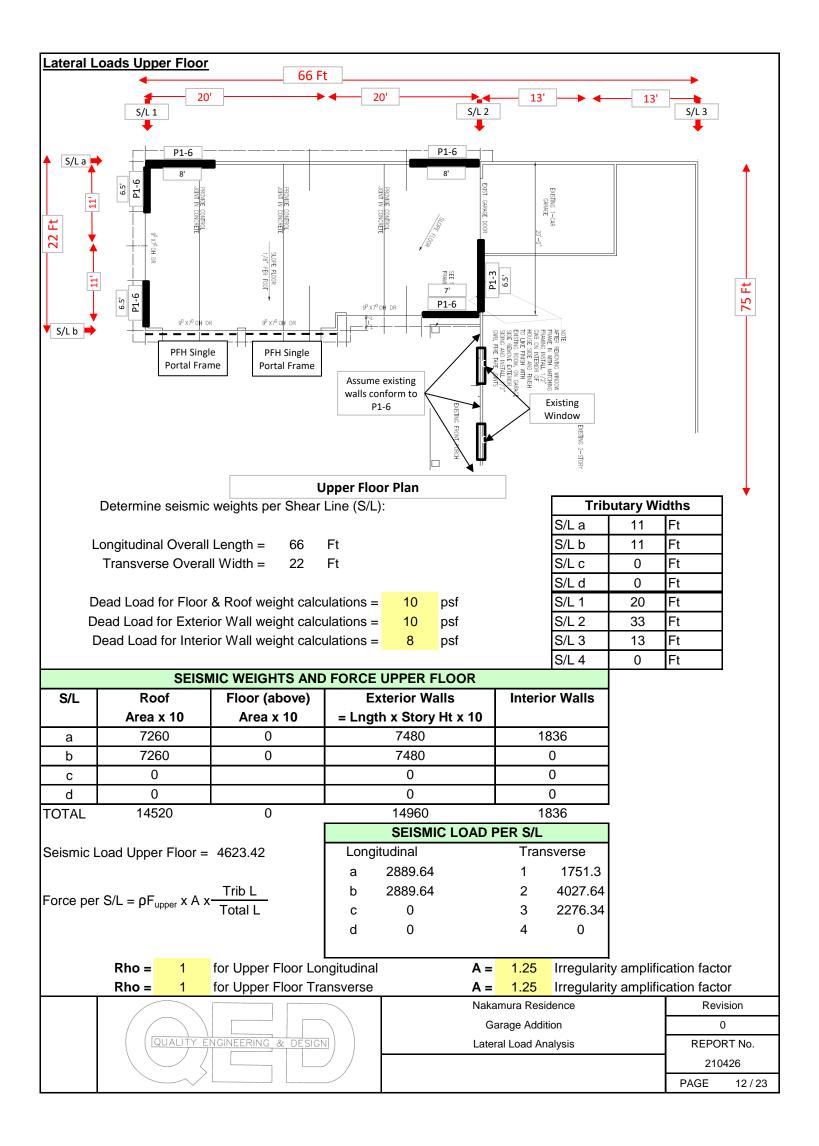
Calculated Shear Wall values from SDPWS:

- a) use lower values for Seimic
- b) Use values for 15/32" structural panels per Footnote 2
- c) Assume Hem-fir #2 framing with G = 0.43 per Footnote 3

Wall	Tabulated Value	Tabulated Value	
Туре	(Table 4.3A)	x 0.5 x 0.93	
P1-6	520	242	
P1-4	760	353	
P1-3	980	456	
P1-2	1280	595	
P2-6	1040	484	See Section 4.3.3.3
P2-4	1520	707	See Section 4.3.3.3
P2-3	1960	911	See Section 4.3.3.3
P2-2	2560	1190	See Section 4.3.3.3


	Nakamura Residence	Revis	sion
	Garage Addition	0	
QUALITY ENGINEERING & DESIGN	Lateral Load Analysis	REPORT No.	
		2104	426
		PAGE	9/23


Seismic Vertical Load Dist


Determine Seismic Weight:

Level	Area Ft ²	Roof Lb.	Floor Lb.	Ext Wall Lb.	Int Wall Lb.	Total Lb.
Upper	2100	14520	0	7480	918	22918
Main	1850	4100	14520	3740	459	22819
Lower						
			т	otal Seism	ic weight	45737
Seisn	nic Base	Shear = 0	.7(Cs)(W) = 0.7(0.1	44)(W) =	4623.4

VERT	ICAL DIS	TRIBUT	k = 1 for T < 0.5			
Level	W _x	h _x	w _x h _x ^k	C _{vx}	F _x	$a = b^k$
Upper	22918	8.5	194803	1.000	4623.4	$C_{vx} = \frac{w_x h_x^k}{\sum_{k=1}^{n} \mu_k^k}$
Main	22819	0	0	0.000	0.0	$\sum w_i h_i^k$
Lower	0	0	0	0.000	0.0	<i>i</i> =1
SUM =	45737		194803		4623.4	$F_x = C_{vx}V$

Lateral L	oads Upp	per Floor							
				Cp FACTOR					
LONGITU	JDINAL D		Parallel to Ridge	1	50	o			
		WALLS	0		RO	-			T
L/B W 66/22= 3.0		Windward	Cp Leeward	h/L	Pitch	Angle		Cp	ł
		0.8	-0.2	11.75/66= 0.2	inch/Ft	Deg 18.43	Windward	-0.18	4
00/22=	3.0	0.8	-0.2	11.75/00= 0.2	4	10.43	-0.5	-0.16]
TRANSV		RECTION	Normal to Ridge						
TRANSVERSE DIRE 22/66= 0.3		0.8	-0.5	11.75/22= 0.5	4	18.43	-0.4	-0.6	T
22/00-	0.0	010	010	11.70/22- 0.0	-	10.40	0.4	0.0	1
			CALCULATED W	WIND PRESSURE					
LONGITU	JDINAL D	IRECTION	Parallel to Ridge						
			Total Wall	Minchesend De of			Tota	l Roof]
windwa	ard Wall	Leeward Wall	Windward - Leeward	Windward Roof	Leewa	rd Roof	Horiz	Comp	1
(qzGCp) -	· (qhGcpi)	(qhGCp) - (qhGcp	i) 15.32	(qhGCp) - (qhGcpi)	(qhGCp)	- (qhGcpi)	-11	1.28	1
									_
	ERSE DIF		Normal to Ridge		•		-		-
(qzGCp) -		(qhGCp) - (qhGcp		(qhGCp) - (qhGcpi)			-	.81	l
	GOVER	1	D - COMPARE CALC		1		LLOWED		т
LONGIT	UGINAL	Wall 16.0	Min per 27.4-1	TRANSVERSE	Wall	21.1	. A'	07.4.4	l
		Roof 8.0	Min per 27.4-1		Roof	8.0	Min pe	r 27.4-1]
				DS PER SHEAR LIN					1
	S/L	TRIBUTARY	STORY	WALL WIND LOAD	ROOF WI		ТО	TAL	
	3/L	WIDTH	HEIGHT	=W x Hw x Pw		Hr x Pr		.6)W	*
	а	11	8.5	1496.0		72		40.8	
	b b	11	8.5	1496.0		72		40.8	ł
	c	0	8.5	0.0)	,	0.0	4
	d		0.0	0.0	``````````````````````````````````````	<u> </u>			1
				Total Longit	ı udinal Wir	nd Load =	= 2,4	81.6	ł
							,		1
	1	20	8.5	3583.4	104	0.0	2,7	74.1	1
	2	33	8.5	7680.7	171	6.0	5,6	38.0	1
	3	13	8.5	4097.2	67	6.0	2,8	63.9	1
	4	0	8.5	0.0	0.0		0.0]
				Total Trans	verse Wir	nd Load =	- 11,2	276.0	
						,	* Per Load	Case 6 in	ASCE
		COMPARING S					7 Max win	d load	
			•	Direction: SEISMIC		5 (considered	d = 0.6W	
			Transverse	Direction: WIND GO	VERNS				
		Governing load	s per shear line:			Wall As	pect Ratio		
		S/L LOAD	1 1	LOAD			Length = 8		2.4 Ft
		a 2,890		2,774			= 4.3 Ft, S		
		b 2,890		5,638			er SDPWS	-	
		c 0	3	2,864	For L =		\rightarrow	0.82	
		d 0	4	0	For L =	4	\rightarrow	0.94	
				ı	For L =	3	\longrightarrow	0.71	
				Naka	mura Reside	ence		Rev	rision
	17			Ga	arage Additic	n			0
		UALITY ENGINEERIN	G & DESIGN	Later	al Load Ana	ysis		File	e No.
		\checkmark $\langle $ \square	$\neg \mid \Box /$					210)426
								PAGE	13/2

Lateral Loads Upper Floor

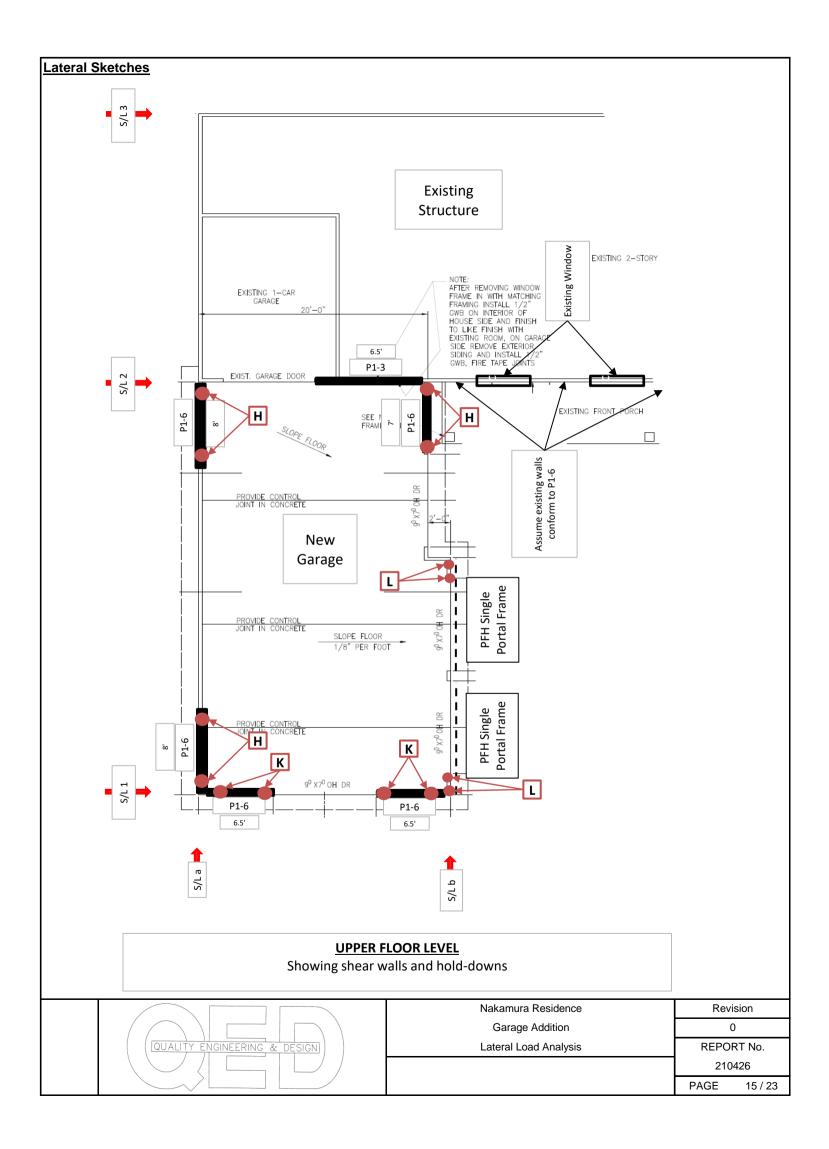
	UNIT LATERAL LOADS PER S/L									
S/L	S/W LENGTHS	TOTAL	UNIT LOAD	S/W TYPE						
	(ft)	(ft.)	(plf)							
а	8' + 8'	16	180.60	P1-6						
b	7' + 4'* + 4'*	39.5	73.16	P1-6						
С										
d										
	* PFH Single Portal Frame	is equivale	ent to 4' Shear Wall							
1	6.5' + 6.5'	13	213.39	P1-6						
2	9.5' + 3'+5.5'+8.75'+8.75'+5.5'+3.5'	44.5	126.70	P1-6						
3	No	ot in Scop	e of Addition							
4										

CALCULATE SHEAR WALL UPLIFT & HOLD-DOWNS

For resisting weight use 10 psf x 60% = 6 psf (60% of dead load resists overturning)

S/L	WALL LENGTH	WALL WEIGHT*	WALL HEIGHT	UPLIFT (Unit Load x L)(H) - (Weight)(L / 2)	HOLD-DOWN TYPE
	8	912	8.5	1079.1	LSTHD8 (1695#)
а	8	912	8.5	1079.1	LSTHD8 (1695#)

	7	798	8.5	222.8	LSTHD8 (1695#)
h	4	456	8.5	See portal Frame	e Detail
b	4	456	8.5	See portal Frame	e Detail


С					
	6.5	325	8.5	1651.3	STHD10 (3725#)

	1	0.5	525	0.5	1001.0	0111D10 (0720#)
	I	6.5	325	8.5	1651.3	STHD10 (3725#)
Î						

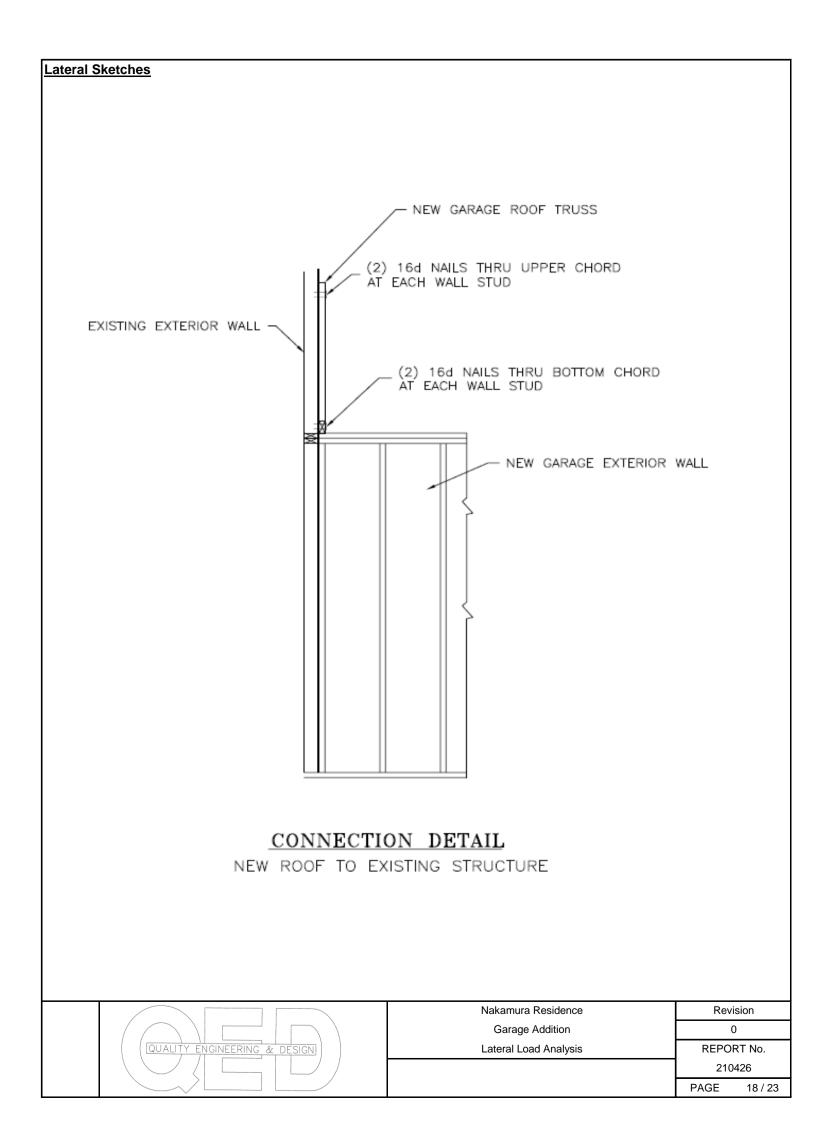
2	9.5	1653	8.5	250.4	No Holddown Req'd
2					

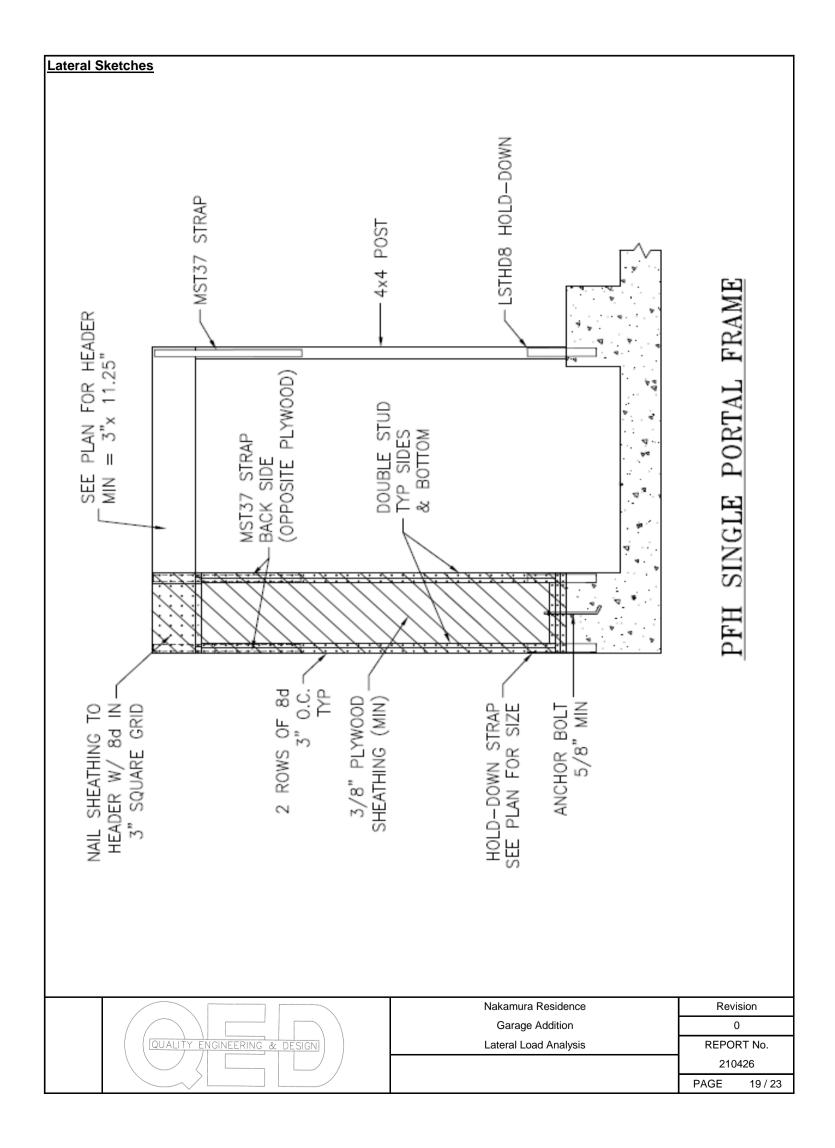
2		Not in Scope of Addition	
3			

	Nakamura Residence	Revis	sion
	Garage Addition	0	
QUALITY ENGINEERING & DESIGN	Lateral Load Analysis	File	No.
		2104	426
		PAGE	14 / 23

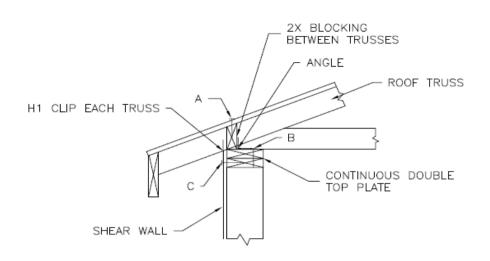
SHEAR WALL SCHEDULE									
DESIGNATION	NAIL SIZE	NAIL S EDGE	PACING FIELD	BLOCKING Y / N	BOTTOM PLATE ANCHORAGE	DESIG LOAI (PLF)			
P1-6	8d	6"	12"	YES	(2) 16d AT 6" O.C. OR 5/8" BOLTS AT 32" O.C.	242			
P1-4	8d	4"	12"	YES	(2) 16d AT 6" O.C. OR 5/8" BOLTS AT 24" O.C.	353			
P1-3	8d	3"	12"	YES	(3) 16d AT 5" O.C. OR 5/8" BOLTS AT 24" O.C.	456			
P1-2	8d	2"	12"	YES	(3) 16d AT 5" O.C. OR 3/4" BOLTS AT 24" O.C.	595			
P2-6	8d	6"	12"	YES	(2) 16d AT 5" O.C. OR 5/8" BOLTS AT 24" O.C.	484			
P2-4	8d	4"	12"	YES	(3) 16d AT 5" O.C. OR 3/4" BOLTS AT 24" O.C.	707			
P2-3	8d	3"	12"	YES	(4) 16d AT 5" O.C. OR 3/4" BOLTS AT 20" O.C.	911			
P2-2	8d	2"	12"	YES	(4) 16d AT 4" O.C. OR 3/4" BOLTS AT 16" O.C.	1190			
5. PANEL EDGE PANEL EDGES I MAY BE INSTAI 6. ANCHOR BOI	S TO BE H FOR P1-3 LLED EIT LTS SHAL	THROUGH HER VER L BE EMB	H P2-4 WA	LLS SHALL BE BLO OR HORIZONTALLY	NAL FRAMING FOR P1-6 AND P1-4 WALLS CKED WITH 3X NOMINAL FRAMING. PAN 7. MUM OF 7", AND SHALL BE INSTALLED W	IELS			
5. PANEL EDGE PANEL EDGES I MAY BE INSTAI 6. ANCHOR BOI SQUARE X 0.229	Ś TO BE H FOR P1-3 LLED EIT TS SHAL 9" WASHI	THROUGH HER VER' L BE EME ERS.	H P2-4 WAJ TICALLY (BEDED IN GINEER	LLS SHALL BE BLO OR HORIZONTALLY CONCRETE A MINII RING SKETCHES Designates Hold-Do	CKED WITH 3X NOMINAL FRAMING. PAN MUM OF 7", AND SHALL BE INSTALLED W	IELS			
PANEL EDGES I MAY BE INSTAI 6. ANCHOR BOI SQUARE X 0.229	Ś TO BE H FOR P1-3 LLED EIT TS SHAL 9" WASHI	THROUGH HER VER' L BE EME ERS.	H P2-4 WAJ TICALLY (BEDED IN (GINEER	LLS SHALL BE BLO OR HORIZONTALLY CONCRETE A MINII RING SKETCHES Designates Hold-Do	CKED WITH 3X NOMINAL FRAMING. PAN MUM OF 7", AND SHALL BE INSTALLED W	IELS			
5. PANEL EDGE PANEL EDGES I MAY BE INSTAI 6. ANCHOR BOI SQUARE X 0.229	Ś TO BE H FOR P1-3 LLED EIT TS SHAL 9" WASHI	THROUGH HER VER' L BE EME ERS.	H P2-4 WAJ TICALLY BEDED IN GINEER	LLS SHALL BE BLO OR HORIZONTALLY CONCRETE A MINIF RING SKETCHES Designates Hold-Do See schedule on fol Shear Wall Location	CKED WITH 3X NOMINAL FRAMING. PAN MUM OF 7", AND SHALL BE INSTALLED W	IELS			
5. PANEL EDGE PANEL EDGES I MAY BE INSTAI 6. ANCHOR BOI SQUARE X 0.229	Ś TO BE H FOR P1-3 LLED EIT TS SHAL 9" WASHI	THROUGH HER VER' L BE EME ERS.	H P2-4 WAJ TICALLY BEDED IN GINEER	LLS SHALL BE BLO OR HORIZONTALLY CONCRETE A MINIF RING SKETCHES Designates Hold-Do See schedule on fol Shear Wall Location	CKED WITH 3X NOMINAL FRAMING. PAN MUM OF 7", AND SHALL BE INSTALLED W wn Location lowing page for hold-down type ee schedule for construction details	NELS VITH 3			
APANEL EDGE ANEL EDGES I MAY BE INSTAL ANCHOR BOI QUARE X 0.229 KEY TO	S TO BE H FOR P1-3 ' LLED EIT TS SHAL O" WASHI	THROUGH HER VER' L BE EME ERS.	H P2-4 WAJ TICALLY (BEDED IN GINEER -E #-#	LLS SHALL BE BLO OR HORIZONTALLY CONCRETE A MINIF RING SKETCHES Designates Hold-Do See schedule on fol Shear Wall Location	CKED WITH 3X NOMINAL FRAMING. PAN MUM OF 7", AND SHALL BE INSTALLED W wn Location lowing page for hold-down type ee schedule for construction details	IELS			

Lateral Sketches

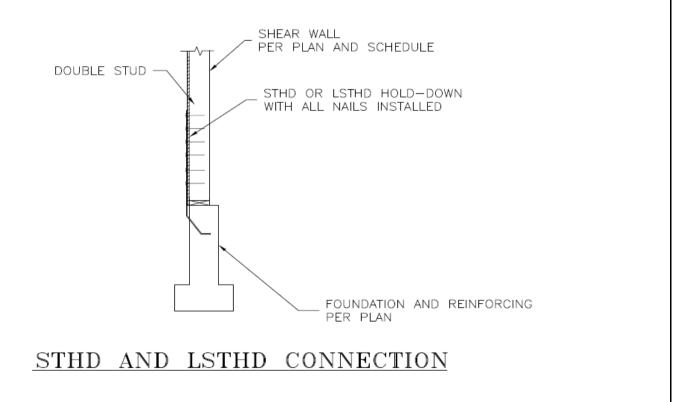

HOLDDOWN SCHEDULE


DESIGNATION	DESCRIPTION	ALLOWABLE DESIGN LOAD (lb)	
A B C D E F G	CMST12 CMST14 CS16 CS14 MST37 MST48 MST60	9,215 (End length =44" w/ (49) 10d each end) 6,490 (End Length = 34" w/ (38) 10d each end 1,700 (End Length = 12" w/ (11) 10d each end 2,490 (End Length = 16" w/ (15) 10d each end 3,815 4,460 5,800	d)))
H J K L	LSTHD8 STHD8 STHD10 STHD14	2 345 3 105	NCRETE STRAP sed on 2000 psi Concrete)
M O P	HDU2-SDS2.5 HDU4-SDS2.5 HDU5-SDS2.5		OLTED TO CONCRETE AILED TO STUDS
Q R1 R2	HDU8-SDS2.5 HDU11-SDS2.5 HDU11-SDS2.5		BOLTED TO CONCRETE SCREWED TO STUDS
S1 S2	HDU14-SDS2.5 HDU14-SDS2.5	14390 (w/ 7 1/4" thick end studs**) 14925 (w/ 5 1/2 x 5 1/2 thick end studs)	

** Dimension shown is in direction parallel to SDS screws. Dimension perpendicular to screws (wall thickness) is 3 1/2" minimum except for Type S2 which requires a 6x6 post


HOLD-DOWNS LISTED ABOVE ARE SIMPSON STRONG-TIE

	Nakamura Residence	Rev	ision
	Garage Addition	(0
(QUALITY ENGINEERING & DESIGN)	Lateral Load Analysis	REPO	RT No.
		210	426
		PAGE	17 / 23



Lateral Sketches

ROOF DIAPHRAGM TO EXTERIOR SHEAR WALL

			NAIL					
SHEAR WALL	AN	GLE	Α		В		С	
TYPE	TYPE	SPACING	SIZE	SPACING	SIZE	SPACING	SIZE	SPACING
P1-6	A34	18"	8d	6"	10d	6"	8d	6"
P1-4	A34	12"	8d	4"	10d	4"	8d	4"
P1-3	A23	12"	8d	3"	10d	3"	8d	3"
P1-2	A23	9"	8d	2"	10d	2"	8d	2"

		Nakamura Residence	Rev	ision
		Garage Addition	(0
(QUALITY ENGINEERING & DESIGN)		Lateral Load Analysis	REPO	RT No.
			210)426
			PAGE	20 / 23

	and a dama				
RHO Cal		1004			
	Determine if Rho per ASCE 7 Section	1 12.3.4			
	Rho Calculation for Main Floor				
		see following justif	ication	Story Height =	8.5
		see following justil		Story Height =	
			ICALION	Story Height =	0.0
	For N/S direction (Shear Lines 1 and 2)				
	From ASCE 7 Section 12.3.4.				
	Each side of structure must ha		ivs of seism	ic force resisting perimeter t	framing
	Where # Bays present = (2x L		-		lannig.
	······································			e.g	
	For East Side:	<u>(9.5) x 2</u>			
		8.5	2.2	> 2, Use Rho =1	
	For West Side:	<u>(6.5+6.5) x 2</u>	3.1		
		8.5		> 2, Use Rho =1	
	For E/W direction (Shear Lines a and b):			
	For North Side:	<u>(8+8) x 2</u>	2.0		
		8.5	3.8	> 2, Use Rho =1	
	For South Side:	<u>(7+4+4) x 2</u>	2 5	2 Lloo Dho -1	
		8.5	3.5	> 2, Use Rho =1	
1					
1					
1					
1					
1					
			Nakan	nura Residence	Revision
				rage Addition	0
	QUALITY ENGINEERING & DESIGN			Il Load Analysis	REPORT No.
		/ /	Latora		210426
					PAGE 21/23
L	~				1702 21/23

Appendix 1

Table 12.3-1 Horizontal Structural Irregularities

Туре	Description	Reference Section	Seismic Design Category Application
1a.	Torsional Irregularity: Torsional irregularity is defined to exist where the maximum story drift, computed including accidental torsion with $A_x = 1.0$, at one end of the structure transverse to an axis is more than 1.2 times the average of the story drifts at the two ends of the structure. Torsional irregularity requirements in the reference sections apply only to structures in which the diaphragms are rigid or semirigid.	12.3.3.4 12.7.3 12.8.4.3 12.12.1 Table 12.6-1 Section 16.2.2	D, E, and F B, C, D, E, and F C, D, E, and F C, D, E, and F D, E, and F B, C, D, E, and F
1b.	Extreme Torsional Irregularity: Extreme torsional irregularity is defined to exist where the maximum story drift, computed including accidental torsion with $A_x = 1.0$, at one end of the structure transverse to an axis is more than 1.4 times the average of the story drifts at the two ends of the structure. Extreme torsional irregularity requirements in the reference sections apply only to structures in which the diaphragms are rigid or semirigid.	12.3.3.1 12.3.3.4 12.7.3 12.8.4.3 12.12.1 Table 12.6-1 Section 16.2.2	E and F D B, C, and D C and D C and D D B, C, and D
2.	Reentrant Corner Irregularity: Reentrant corner irregularity is defined to exist where both plan projections of the structure beyond a reentrant corner are greater than 15% of the plan dimension of the structure in the given direction.	12.3.3.4 Table 12.6-1	D, E, and F D, E, and F
3.	Diaphragm Discontinuity Irregularity: Diaphragm discontinuity irregularity is defined to exist where there is a diaphragm with an abrupt discontinuity or variation in stiffness, including one having a cutout or open area greater than 50% of the gross enclosed diaphragm area, or a change in effective diaphragm stiffness of more than 50% from one story to the next.	12.3.3.4 Table 12.6-1	D, E, and F D, E, and F
4.	Out-of-Plane Offset Irregularity: Out-of-plane offset irregularity is defined to exist where there is a discontinuity in a lateral force-resistance path, such as an out-of-plane offset of at least one of the vertical elements.	12.3.3.3 12.3.3.4 12.7.3 Table 12.6-1 Section 16.2.2	B, C, D, E, and F D, E, and F B, C, D, E, and F D, E, and F B, C, D, E, and F
5.	Nonparallel System Irregularity: Nonparallel system irregularity is defined to exist where vertical lateral force-resisting elements are not parallel to the major orthogonal axes of the seismic force-resisting system.	12.5.3 12.7.3 Table 12.6-1 Section 16.2.2	C, D, E, and F B, C, D, E, and F D, E, and F B, C, D, E, and F

Type 2 Irregularity applies to re-entrant corner near garage. Per Section 12.3.3.4 increase loads by 25% for connections of diaphragms to vertical elements and collectors and their connections. To account for this increase, the capacity of connection details has been increased by 25%

Type 3 Irregularity exists at large opening in 2nd floor diaphragm. Same requirements as for Type 2 apply

Type 4 Out of plane wall irregularity (longitudinal direction on upper floor). Same requirements as for Type 2 apply

	Nakamura Residence	Revi	sion
	Garage Addition	C)
((QUALITY ENGINEERING & DESIGN)	Lateral Load Analysis	REPORT No.	
		210	426
		PAGE	22 / 23

Appendix 1

From NDS (National Design Specification for Wood Structures):

Allowable Nail Shear = (Tabulated Value)(CD)(CM)(Ct)(Ctm)

- = 80.1 lb. for Normal Duration
- = 142.4 lb. for Earthquake Loads

Tabulated Value =	89	lb. shear for 16d
For Normal Duration: CD =	0.9	for earthquake loading per NDS 2.3.2
For Earthquake Loads: CD =	1.6	
CM =	1	Wet Service Factor
Ct =	1	Temperature Factor
Ctn =	1	Toe Nail Factor
Cg =		Group Factor (See Table 10.3.6A/B/C/D)
CΔ =		Geometry Factor
Ceg =		End Grain Factor
Cdi =	1	= 1 (except = 1.1 for nails or spikes in diaphragm construction)

	Nakamura Residence	Revi	ision
QUALITY ENGINEERING & DESIGN	Garage Addition	0	
	Lateral Load Analysis	File No.	
		210	426
		PAGE	23 / 23